
BCA Semester- I

Programming in C (NBCA-102)

Unit II: C Programming Constructs

1. What are the main components of a C program? Describe the structure of a C program

with an example.

A C program is structured into different sections, each of which performs a specific role.

Understanding the organization of these components helps ensure proper compilation and

execution. The main components of a C program include:

• Preprocessor Directives:

o Preprocessor directives are commands that are processed before the actual

compilation of the program begins. These usually include #include for including

standard or user-defined header files, and #define for defining macros.

o Example:

#include <stdio.h> // Includes the standard input/output library

#define PI 3.14159 // Defines a macro constant

• Global Declarations:

o Global variables and constants can be declared outside of the main() function.

These are accessible to all functions in the program.

o Example:

int count = 0; // Global variable

• Main Function:

o The main() function is the entry point for any C program. This is where program

execution begins. Every C program must contain a main() function.

o Example:

int main() {

 return 0;

}

• Variable Declarations:

o Inside the main() function (or any other function), variables are declared to store

data temporarily during the program's execution.

o Example:

int number; // Variable declaration

• Statements and Expressions:

o C programs consist of statements and expressions that define the logic and

operations to be performed. These may include arithmetic operations, conditional

statements (if, switch), loops (for, while), function calls, etc.

o Example:

number = 5 + 3; // Expression

printf("The sum is %d\n", number); // Statement

• Functions:

o Functions are self-contained blocks of code that perform specific tasks. A

function can be called from the main() function or from other functions to

execute a certain task.

o Example:

int sum(int a, int b) {

 return a + b;

}

• Return Statement:

o The return statement ends the function and returns control to the calling

function. In the main() function, a return value of 0 typically indicates successful

program execution.

o Example:

return 0;

 Program Example:

#include <stdio.h> // Preprocessor directive

// Global variable

int global_count = 10;

// Function to calculate the square of a number

int square(int num) {

 return num * num;

}

int main() {

 int num = 5; // Local variable declaration

 int result;

 // Function call and assignment

 result = square(num);

 // Output the result

 printf("The square of %d is %d\n", num, result);

 return 0; // End of the program

}

2. Explain operator precedence and associativity in C. Why are they important in program

execution? Provide examples.

• Operator precedence refers to the rules that determine the order in which different

operators are evaluated in expressions. For example, in an expression with multiple

operators, some operators are given higher priority than others. Operators with higher

precedence are evaluated first.

o Example:

int result = 5 + 3 * 2; // result is 11, not 16

In this example, multiplication (*) has a higher precedence than addition (+), so 3

* 2 is evaluated first, and then 5 + 6 is calculated to get the final result.

• Operator associativity determines the order in which operators of the same precedence

level are evaluated. Associativity can be left-to-right or right-to-left.

o Left-to-right associativity: Most operators in C (such as +, -, *, /) follow left-to-

right associativity. This means that when multiple operators of the same

precedence appear in an expression, they are evaluated from left to right.

▪ Example:

int result = 10 - 5 + 2; // result is 7 (evaluated as (10

- 5) + 2)

o Right-to-left associativity: Some operators, like the assignment operator (=) and

the conditional operator (?:), have right-to-left associativity.

▪ Example:

int a, b, c;

a = b = c = 5; // Right-to-left associativity, evaluated

as a = (b = (c = 5))

• Importance in Program Execution:

o Precedence ensures that expressions are evaluated in a logical and predictable

manner. Without precedence, expressions like 3 + 5 * 2 could produce incorrect

results if the operators were evaluated strictly left-to-right without regard for the

priority of multiplication over addition.

o Associativity is crucial when dealing with operators of the same precedence. For

example, consider the expression 5 - 3 + 2. If both subtraction and addition had

no associativity rules, the result could be ambiguous.

o Incorrect assumptions about precedence or associativity can lead to bugs or

unintended behavior in programs.

• Precedence and Associativity Table:

Precedence Operator Associativity

1 () [] -> . left-to-right

2 ! ~ ++ -- + - right-to-left

3 * / % left-to-right

4 + - left-to-right

5 << >> left-to-right

6 < <= > >= left-to-right

7 == != left-to-right

8 & left-to-right

9 ^ left-to-right

10 | left-to-right

11 && left-to-right

12 || left-to-right

13 ?: right-to-left

14 = += -= right-to-left

3. What are storage classes in C? Discuss the different types and give an example for each

storage class (automatic, register, static, and external).

In C, a storage class defines the scope (visibility), lifetime (duration of existence), and memory

location of variables. There are four types of storage classes:

1. Automatic Storage Class (auto):

o The auto storage class is the default for local variables inside functions. Variables

with the auto class have block scope, meaning they are created when the block

(function) starts and destroyed when it ends.

o Example:

void func() {

 auto int x = 10; // This variable 'x' is local to 'func'

 printf("%d\n", x);

}

o Characteristics:

▪ Storage: Memory

▪ Lifetime: Created when the function is called and destroyed when it exits.

▪ Scope: Local to the block in which it is defined.

2. Register Storage Class (register):

o The register storage class requests that the variable be stored in a CPU register

rather than in memory, making access to the variable faster. However, the actual

placement of the variable in a register is not guaranteed and depends on the

hardware.

o Example:

void func() {

 register int counter = 0; // Request to store 'counter' in a

CPU register

 counter++;

 printf("%d\n", counter);

}

o Characteristics:

▪ Storage: CPU register

▪ Lifetime: Same as auto (local variables)

▪ Scope: Local to the block.

3. Static Storage Class (static):

o The static storage class extends the lifetime of a variable to the entire program.

This means that the variable is created when the program starts and destroyed

when it ends, but it retains block scope (i.e., it is only accessible within the

function or block where it is declared). A static variable preserves its value

between function calls.

o Example:

void count() {

 static int x = 0; // Static variable

 x++;

 printf("%d\n", x);

}

int main() {

 count(); // Output: 1

 count(); // Output: 2 (because x retains its value)

 return 0;

}

o Characteristics:

▪ Storage: Memory

▪ Lifetime: Throughout the program's execution.

▪ Scope: Local to the block, but retains value between function calls.

4. External Storage Class (extern):

o The extern storage class is used to declare a global variable or function in

another file or later in the same file. It tells the compiler that the variable or

function exists and is defined elsewhere. Variables declared with extern have

global scope and can be accessed across different files in a multi-file program.

o Example:

extern int global_var; // Declares a global variable defined

elsewhere

If global_var is defined in another file, it can be accessed using extern.

o Characteristics:

▪ Storage: Memory

▪ Lifetime: Throughout the program's execution.

▪ Scope: Global, accessible across multiple files.

4. Write a C program that demonstrates the use of printf() and scanf() for input and

output. Explain how these functions work.

In C, printf() is used to display output to the console, and scanf() is used to read input from

the user. These functions are part of the standard input/output library (stdio.h).

• printf():

o printf() is used to print formatted output. It takes a format string that specifies

how the output should be displayed, followed by the values to print.

o Example format specifiers:

▪ %d: Integer

▪ %f: Floating-point number

▪ %c: Character

▪ %s: String

▪ %.2f: Floating-point number with 2 decimal places

• scanf():

o scanf() is used to read input from the user. It requires the format specifier for the

type of input expected and the address of the variable where the input should be

stored. The address operator (&) is used to pass the address of the variable.

• Example Program:

#include <stdio.h>

int main() {

 int age;

 float salary;

 // Taking input from the user

 printf("Enter your age: ");

 scanf("%d", &age); // Reads an integer value into 'age'

 printf("Enter your salary: ");

 scanf("%f", &salary); // Reads a float value into 'salary'

 // Displaying the output

 printf("Your age is %d and your salary is %.2f\n", age, salary);

 return 0;

}

• Explanation:

1. printf("Enter your age: ");: This prints the string "Enter your age: " to the

console.

2. scanf("%d", &age);: This waits for the user to enter an integer value, which is

then stored in the variable age. The %d format specifier tells scanf() to expect an

integer. The &age passes the address of the age variable, so scanf() knows

where to store the input.

3. printf("Your age is %d and your salary is %.2f", age, salary);:

This prints the values of age and salary to the console. %d is used for the integer

age, and %.2f is used for the floating-point salary, rounded to two decimal

places.

This program demonstrates the use of both printf() and scanf() for basic input/output

operations in C.

	BCA Semester- I
	Programming in C (NBCA-102)
	Unit II: C Programming Constructs
	1. What are the main components of a C program? Describe the structure of a C program with an example.
	2. Explain operator precedence and associativity in C. Why are they important in program execution? Provide examples.
	3. What are storage classes in C? Discuss the different types and give an example for each storage class (automatic, register, static, and external).
	4. Write a C program that demonstrates the use of printf() and scanf() for input and output. Explain how these functions work.

